Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
这次的题目要求是得到所有的树。
我的思路:
用f[n]存储1-n的所有方法的根节点
则 f[n+1] = 1作为根,f[0]做左子树,f[n]所有节点都加1做右子树 + 2作为根,f[1]做左子树,f[n - 1]所有节点都加2做右子树 +...
代码内存都没有释放,不过AC了。
#include#include #include #include #include using namespace std;// Definition for binary tree struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} };class Solution {public: vector generateTrees(int n) { vector > ans(n + 1, vector ()); if(n == 0) { ans[0].push_back(NULL); return ans[0]; } TreeNode * root = NULL; ans[0].push_back(root); root = new TreeNode(1); ans[1].push_back(root); for(int i = 2; i <= n; i++) //总数字 { for(int j = 0; j < i; j++) //小于根节点的数字个数 { for(int l = 0; l < ans[j].size(); l++) //小于根节点的组成方法数 { for(int r = 0; r < ans[i - j - 1].size(); r++) //大于根节点的组成方法数 { TreeNode * root = new TreeNode(j + 1); root->left = ans[j][l]; root->right = add(ans[i - j - 1][r], j + 1); //大于根节点的需要加上差值 ans[i].push_back(root); } } } } return ans[n]; } TreeNode * add(TreeNode * root, int Num) { if(root == NULL) { return root; } TreeNode * T = new TreeNode(root->val + Num); T->left = add(root->left, Num); T->right = add(root->right, Num); return T; }};int main(){ Solution s; vector ans = s.generateTrees(3); return 0;}
看别人的思路,把建立子树分为从数字start-end,直接递归求解,不需要像我的那样每次还要把右子树遍历增加值
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */class Solution {public: vectorgenerateTreesRec(int start, int end){ vector v; if(start > end){ v.push_back(NULL); return v; } for(int i = start; i <= end; ++i){ vector left = generateTreesRec(start, i - 1); vector right = generateTreesRec(i + 1, end); TreeNode *node; for(int j = 0; j < left.size(); ++j){ for(int k = 0; k < right.size(); ++k){ node = new TreeNode(i); node->left = left[j]; node->right = right[k]; v.push_back(node); } } } return v; } vector generateTrees(int n) { return generateTreesRec(1, n); }};